Fattori che influenzano lo stato trofico dell'Adriatico

Michele Giani¹, Martina Kralj¹, Cinzia De Vittor¹, Lidia Urbini¹, Tamara Djakovac²

¹Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Trieste, Italy

²Center for Marine Research (CMR), Ruđer Bošković Institute, Rovinj, Croatia

Cesenatico, 14 novembre 2019

Istituto Nazionale <u>1</u> di Oceanografia e di Geofisica Sperimentale

Focus su

- Impatto degli apporti fluviali sulle concnetratzioni di nutrienti e sulla clorofilla
- Acidificazione
- Riscaldamento delle acque
- Contenuto di ossigeno nelle acque-eventi ipossici

Riverine inputs into the North Adriatic

Po river discharge accounts for:

68% of all the riverine inputs in the Northern Adriatic Sea

14% of the whole river discharge in the Mediterranean sea (312 km³ y⁻¹)

Drainage basin: 71 *10³ km²

Resident population: 17*10⁶ inhabitants.

Animal population:

total 64 *10⁶ Population
Equivalent

Chl a concentration trends from satellites

1998–2009

Color bar scale represents the relative changes (%) corresponding to the dimensional trend (mg m⁻³ y⁻¹) with respect to the climatological Chl concentration values.

North Adriatic: ~ -10% y⁻¹

From Colella et al. 2016

1998–2014

Scale units represent the changes in mg m⁻³ decade⁻¹. Only 95% significant Theil-Sen trends (p < 0.05) are shown.

Large positive trends are found in the Adriatic Sea where the mean increase is

+0.047 ± 0.085 mg m⁻³ decade⁻¹, and maximum values are found along the north-western shore (+0.241 ± 0.022 mg m⁻³ decade⁻¹)

From Salgado Hernanz et al. 2019₅

Data sources and elaboration

Data for the open NAd were collected by CRM-IRB Rovini

Data on Po flow discharge at Pontelagoscuro/Polesella (closure section of the drainage basin) were obtained by ARPA Emilia Romagna.

The data of monthly river discharges for the period 1807-1916 were supplied by Zanchettin et al. (2008) who reconstructed the discharges from stage measurements.

Data on concentrations of nutrients in Po river at Pontelagoscuro/Polesella (1968-2016) were obtained from Autorità di Bacino del Fiume Po, ARPA Emilia Romagna, IRSA-CNR and from scientific publications.

Cruises in the NAd (1972-2017)

Data on N and P fertilizer consumption for the period 1952-2016 were obtained by ISTAT (Annuari statistici agricoltura)

Annual integrated transport by river (F; expressed in tons of N, P and Si per year) was estimated for each nutrient using the equation based on discharge weighted means of daily transport:

$F = [\Sigma_i(C_i * Q_i) / \Sigma_i Q_i] Q_v * m_A * 10^{-6}$

where:

 C_i = nutrient concentration (mol m⁻³) and Q_i = average flow rate (m³ s⁻¹) for each day of sampling,

 Q_{y} = annual runoff (m³ y⁻¹)

 $\mathbf{m}_{\mathbf{A}}$ = the atomic mass of the biogenic element.

Linear trends were estimated by **non-parametric Mann Kendall and Sen's Tests** (MAKESENS; Salmi et al. 2002).

Regime shifts in time series were detected by a Sequential T-test Analysis of Regime Shifts (Sequential Regime Shift Detector SRDS ver 5.2 software package (Rodionov, 2004). SRDS uses the *t*-statistic to estimate a threshold, or critical level, for the new regime to be detected.

Po River annual freshwater discharge (1918-2018)

Changes of the trend in Po River discharge in the period 1942-2018

Non parametric Mann-Kendall test

Variations in seasonal discharge regime

Seasonal variation of surface NO_3 , PO_4 and SiO_2 concentrations

Mean climatology of 8-day Chl a time series for a composite year, relative to the period 1998–2014

from Salgado-Hernanz et al., Remote Sensing Env. 2019

Cesenatico, 14 novembre 2019

Padua

2,000

WeMO

500 1,000

San Fernando

Time (year)

WMOI & Po discharges (Q) 1917-2017

Month	Q vs WMOI	1917-2017		
	r	р		
JAN	0.021	0.833		
FEB	0.157	0.118		
MAR	0.185	0.065		
APR	0.281	0.004		
MAY	0.070	0.490		
JUN	0.295	0.003		
JUL	0.239	0.016		
AUG	0.236	0.018		
SEP	0.259	0.009		
ОСТ	0.012	0.903		
NOV	0.150	0.135		
DEC	0.495	0.625		

Cesenatico, 14 novembre 2019

Po river discharge vs Western Mediterranean Oscillation Index 1917-2017

Cesenatico, 14 novembre 2019

Trends of N loads in Po river 1969-2017

OGS

Istituto Nazionale 15 di Oceanografia e di Geofisica Sperimentale

Trends of P loads in Po river

OGS

Istituto Nazionale 16 di Oceanografia e di Geofisica Sperimentale

Trend of TIN/PO₄ molar ratio of Po river nutrients load 1977-2017

Relative incidence of NO₃ on dissolved inorganic N

Median annual salinity vs Freshwaters annual discharge (1972-2017)

Median annual NO₃ concentrations vs NO₃ annual loads (1973-2017)

Median annual PO₄ concentrations vs PO₄ annual loads (1972-2017)

Median annual N/P ratio in seawater vs N/P annual load (1972-2017)

Temporal trends in the open surface waters of northern Adriatic sea 1972-2017

Stations	S	SJ108		SJ101		SJ103		SJ105		SJ107	
(0-5m)		r	р	r	р	r	р	r	р	r	р
NO3		0.1199	0.0006	0.1159	0.0012	0.1253	0.0006	0.0853	0.0179	0.1601	0.000002
PO4	Ţ	-0.0053	0.881	-0.1209	0.0008	-0.1503	0.00004	-0.1419	0.00008	-0.2135	0.0000
N/P	1	0.1611	0.000005	0.1672	0.000004	0.1976	5E-08	0.1637	0.000006	0.1911	0.000000
Chl a		-0.1263	0.0003	-0.0658	0.0613	-0.1038	0.0035	-0.0913	0.0096	-0.052	0.1087

Cesenatico, 14 novembre 2019

Istituto Nazionale 23 di Oceanografia e di Geofisica Sperimentale

Chlorophyll a trends at three long term monitoring sites in the Gulf of Trieste (northern Adriatic Sea)

Station	Depth (m)	р	r	Slope (µg L ⁻¹ y ⁻¹)	Period (years)	
00CZ	<20	0.000	-0.227	-0.026	1989-2016	
00CZ	<=5	0.001	-0.26	-0.026	1989-2016	
00CZ	>=24	0.711	-0.042	-0.006	1989-2016	
000F	<20	0.004	-0.16	-0.014	1983-2016	
000F	<=5	0.004	-0.207	-0.015	1983-2016	
000F	>=21	0.045	-0.206	-0.018	1983-2016	
C1	<=15	0.000	-0.289	-0.027	1986-90/1999-2016	
C1	<=15	0.612	-0.035	-0.005	1999-2016	
C1	<=5	0.000	-0.338	-0.024	1986-90/1999-2016	
C1	<=5	0.272	-0.107	-0.011	1999-2016	

from Kralj et al. Deep Sea Res. 2019

24

Acidification in the Mediterranean Sea

The acidification trend in Mediterranean Sea

pH trend Point B Villefranche –sur Mer (France)

Anthropogenic carbon in the Mediterranean Sea

Istituto Nazionale di Oceanografia e di Geofisica Sperimentale

Sistema osservativo marino del Golfo di Trieste Acqua

Temperatura, salinità (dal 1986) O2 disciolto (dal 1986) Nutrienti (dal 1996) C, N, P organici (dal 1998) pH, alcalinità (dal 2011) Clorofilla (dal 1986) Picoplancton (dal 1993) Nanoplancton (dal 1998) Microfitoplancton (dal 1986) Microzooplancton (dal 1986) Mesozooplancton (dal 1986) Prod. Primaria (dal 1998) Prod. Secondaria (dal 1998) Attività esoenzimatiche (dal 1998) **Sedimento**

Microfitobenthos (dal 2002) Meiobenthos (dal 2002) Macrozoobenthos (dal 2002) Prod. Primaria (dal 2002) Respirazione (dal 2010) Prod. secondaria (dal 2010) Attività esoenzimatiche (dal 2010)

Variazioni interannuali del pH nell' AMP di Miramare 2011-2016

OGS

Variazioni interannuali del consumo apparente di ossigeno nell' AMP di Miramare -C1

Trends nel pH

2011-2019

AMP Miramare - C1

Riscaldamento delle acque superficiali

Il Mediterraneo si sta riscaldando di 0.35 C per decade (1982-2012), con un trend nella variabilità stagionale che risulta massimo in primavera

Shaltout & Omstedt, 2014

Annual mean sea temperature at 2 m depth for 1899 to 2015 (blue dots and dashed curve) and linear trend for 1899 to 2015 (red line) and for 1946-2015 (green line). Gulf of Trieste

From Raicich & Colucci, Earth Syst. Sci Data, 2019

Seawater warming in the water column in the Trieste gulf

Linear regression between Temperature, Dissolved Oxygen (DO), Apparent Oxygen Utilization (AOU), Salinity, Chlorophyll a, and Period during August-September-October. Values in bold are considered as statistically significant.

Parameter (unit)	Station	Depth (m)	р	r	Slope (unit y ⁻¹)	Period (years)
Temperature (°C) *	00CZ	< 20	0.050	0.103	0.032	1989-2016
•	00CZ	< =5	0.105	0.111	0.034	1989-2016
	00CZ	> = 24	0.061	0.183	0.039	1989-2016
	000F	< 20	0.001	0.145	0.038	1983-2016
	000F	< =5	0.040	0.126	0.033	1983-2016
	000F	> = 21	0.009	0.201	0.031	1983-2016
	C1	< =15	0.000	0.084	0.023	1986-2016
	C1	< =5	0.034	0.052	0.016	1986-2016

From Kralj et al. Deep Sea Res, 2019

Figure 8. Annual trends in residual temperature, salinity and PDA. Filled circles denote trends with a significance level of 95 %.

From Vilibic et al., Ocean Sci., 2019

OGS

Cesenatico, 14 novembre 2019

Mean monthly sea surface temperature for northern stations Rab and Senj

Monthly linear SST trends for the warming period 1979–2015 at:

Senj (+0.293 °C/10 yr) and Rab (+0.226 °C/10 yr)

From Grbec et al., Pure Appl. Geophys., 2018

Hypoxia in bottom waters of the Northern Adriatic Sea

From Djakovac et al. J. Mar. Sys 2015

Quale futuro ?

- E' molto difficile prevedere i trend negli apporti di acque dolci
- C'e' un surplus di N che dovrebbe essere ridotto (lo sbilanciamento N/P è in aumento)
- Sembra che la P limitazione continui a mantenere un trend di diminuzione della clorofilla
- Il riscaldamento nel NAd è significativo non solo nelle acque superficiali ma fino a più di 20 m e ciò avrà effetti sulle attività metaboliche degli organismi, sulle abbondanze delle specie plantoniche, sui periodi di fioritura
- Increasing stratification? Effects on overturning of bottom waters?
- Trend di diminuzione degli eventi ipossici nelle acque aperte
- Deossigenazione dovuta all'aumento delle temperature
- Acidificazione dovuta alla dissoluzione delle CO2 dall'atmosfera
- Specie invasive che possono avere impatti rilevanti su alcuni livelli della rete trofica (ad es Mnemiopsis leiidyi)

Considerazioni finali

Il Nord Adriatico ed il golfo di Trieste sono soggetti a molteplici effetti dei cambiamenti climatici e di crescenti pressioni antropiche.

Sebbene i trends di alcune variabili e di alcune pressioni siano prevedibili (T, S, CO2,..) altre non lo sono (ad es.: sviluppo di specie non indigene, incremento delle specie algali potenzialmente tossiche, prolungati periodi di siccità, eventi meteorologici estremi,...).

L'interazione tra i diversi fattori fisici, chimici e biologici, viene integrata in modelli ecologici sempre più complessi, ma non si può prescindere da un sistema osservativo (complesso ed integrato) che fornisca risultati utili per comprendere sempre meglio, sulle appropriate scale spazio-temporali, i processi che governano gli ecosistemi marini.

Prevedere l'evoluzione dello stato trofico del Nord Adriatico considerata la sua complessità e variabilità e molto ambizione e richiede grandi sforzi coordinati e multidisciplinari protratti sul lungo periodo.

Ringraziamenti

- Ministry of Science, Education and Sport of the Republic of Croatia projects 0982705-2731 and 0982705-2707.
- EC INTERREG III projects,
- Joint Italian–Croatia–Slovenian Commission for the Protection of the Adriatic Sea (ASCOP Project),
- Alpe Adria project on mucilages,
- MAT(Mucilages in the Adriatic and Tyrrhenian seas) project, financed by
- the Italian Ministry of the Environment
- Croatian–USA collaboration (granted by NSF and Smithsonian Institute).
- PERSEUS FP7 project
- ARPA Emilia Romagna
- Autorità di bacino del Fiume Po
- ISTAT
- GOS ISAC CNR Rome & ISMAR-CNR Ancona
- Crews of Vila Velebita

Thank you for your attention

Conclusions

- Po river discharge show **strong multidecadal variations**: in the last 40y there was a slight decreasing trend (not significant on a longer time scale)
- Po river frewshwater discharges show variations in the seasonal regime with lower discharge in the summer, anticipation of spring peak, and more intense freshets in spring and autumn
- The lower summer discharges are strongly related to the negative phase of WMOI (High pressure over Italy)
- Strong changes in the freshwater and nutrients discharges occurred in the last 4 decades:

Po nutrients loads $P \downarrow NO_3 = NH_4 \lor N/P^{\uparrow}$

Ρ

The reduction of P consumption in agricolture seems to be one of the causes together with P ban in detergents, of the decrease of PO_4 load in Po river

These variations were quite well correlated with the variations in seawater

NAd concentrations

Tendenza della temperatura nella colonna d'acqua (0-15m, stazione C1-

Spatial maps of Primary Productivity Rates, PPR, anomalies (mean from 2095 to 2099 minus 2015-2019) for the scenario runs.(A) MPI, rcp45.5

From Macias et al. 2015

Consumption of N fertilizers (blue line) in the Po River watershed and NO_3 load (red dots) transported by Po River

Cesenatico, 14 novembre 2019

Consumption of P fertilizers (blue line) in the Po river watershed and P-PO₄ load (red dots) transported by Po river

P-PO₄ load from Po Rivers vs P in fertilizers consumed in Po valley

